Preview

Omsk Scientific Bulletin

Advanced search

Experimental verification of the applicability of methods for calculating the compressibility factor of natural gas at low temperatures

https://doi.org/10.25206/1813-8225-2024-190-163-170

EDN: CATICR

Abstract

The article is devoted to the analysis of compressibility factor calculation methods in the temperature range from 220 to 250 K. The AGA8-92DC (GOST 30319.2- 96), AGA8 Report Detail (GOST 30319.3-2015), GERG-2004/2008, NX19, GERG-91, ISO 20765-1 (GOST R 8.662-2009), GSSSD MR 118-05 (moderately compressed gas mixtures) and GSSSD MR 113-03 (Wet Oil Gas) methods are experimentally tested. Deviations of experimental data and calculated values of compressibility coefficient determined by the specified methods are shown. It is found out that the deviation of the calculated values of the compressibility factor according to the AGA8-92DC, AGA8 Report 1 Detail, GERG-2004/2008, ISO 20765-1 (GOST R 8.662-2009), GSSSD MR 13-03 methods from the experimental ones does not exceed 0,1 %. This fact confirms the possibility of using these methods in the temperature range from 220 to 250 K. The results obtained in the framework of this study are highly significant for flow metering, and in particular, provide an increase in the accuracy of the procedure for bringing the volume of natural gas to standard conditions at low temperatures.

About the Authors

D. Yu. Kutovoy
LLC «Gazprom Mezhregiongaz»
Russian Federation

Kutovoy Denis Yuryevich, Deputy Head of Implementation and Operation of ASKUG and Metrology Department

AuthorID (RSCI): 1221096

AuthorID (SCOPUS): 57454390400

Saint Petersburg



R. I. Ganiev
LLC Metrology Center «STP»
Russian Federation

Ganiev Rais Ilyasovich, Candidate of Technical Sciences, Head of Advanced Development Department

AuthorID (SCOPUS): 57454398500

Kazan



M. L. Shustrova
Kazan National Research Technological University
Russian Federation

Shustrova Marina Leonidovna, Candidate of Technical Sciences, Associate Professor of Automated Information Collection and Processing Systems Department

AuthorID (RSCI): 692110

AuthorID (SCOPUS): 55899044400

ResearcherID: AAB-9523-2020

Kazan



V. B. Yavkin
Kazan National Research Technical University named after A. N. Tupolev–KAI
Russian Federation

Yavkin Vladimir Borisovich, Candidate of Technical Sciences, Associate Professor of Jet Engines and Power Plants Department

AuthorID (RSCI): 16521

AuthorID (SCOPUS): 6507971971

Kazan



V. A. Fafurin
Kazan National Research Technical University named after A. N. Tupolev–KAI
Russian Federation

Fafurin Viktor Andreyevich, Doctor of Technical Sciences, Professor of Automated Information Collection and Processing Systems Department

AuthorID (RSCI): 650664

AuthorID (SCOPUS): 16021867600

Kazan



References

1. GOST 2939-63. Gazy. Usloviya dlya opredeleniya ob′′yema [Gases. Conditions for determination of volume]. Moscow, 1988. 3 p. (In Russ.).

2. GOST R 8.740-2011. Gosudarstvennaya sistema obespecheniya yedinstva izmereniy. Raskhod i kolichestvo gaza. Metodika izmereniy s pomoshch′yu turbinnykh, rotatsionnykh i vikhrevykh raskhodomerov i schetchikov [State system for ensuring the uniformity of measurements. Flow rate and quantity of gas. Measurements procedure by turbine, rotary and vortex flow meters and gas meters]. Moscow, 2010. 57 p. (In Russ.).

3. Ganiev R. I., Kutovoy D. Yu., Fafurin V. A., Shustrova M. L., Yavkin V. B. Otsenka primenimosti uravneniy sostoyaniya prirodnogo gaza v oblasti nizkikh temperature [Applicability Evaluation of Natural Gas State Equations at Low Temperatures] // Intellektual′nyye sistemy v proizvodstve. Intellectual Systems in Production. 2023. Vol. 21, no. 3. P. 4–10. DOI: 10.22213/2410-9304-2023-3-4-10. (In Russ.).

4. GOST 8.611-2013. Gosudarstvennaya sistema obespecheniya yedinstva izmereniy. Raskhod i kolichestvo gaza. Metodika (metod) izmereniy s pomoshch′yu ul′trazvukovykh preobrazovateley raskhoda [State system for ensuring the uniformity of measurements. Flow rate and quantity of gas. Technique (method) of measurements by ultrasonic meters]. Moscow, 2013. 54 p. (In Russ.).

5. Ganiev R. I., Kutovoy D. Yu., Fafurin V. A., Shustrova M. L., Yavkin V. B. Vliyaniye pogreshnostey opredeleniya koeffitsiyenta szhimayemosti na rezul′tat izmereniya raskhoda prirodnogo gaza pri nizkikh temperaturakh [Effect of compressibility factor error on low temperature natural gas flow measurement] // YuzhnoSibirskiy nauchnyy vestnik. South-Siberian Scientific Bulletin. 2023. No 4. (50). P. 16–21. (In Russ.).

6. Kunz O., Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004 // Journal of Chemical & Engineering Data. 2012. No. 57 (11). P. 3032–3091. DOI: 10.1021/je300655b. (In Engl.).

7. Jaeschke M., Humphreys A. E. The GERG Databank of High Accuracy Compressibility Factor Measurements // GERG Technical Monograph. 1991. Vol. 6, no. 251. URL: http://www.gerg.eu/public/uploads/files/publications/technical_monographs/tm4_91.pdf (accessed: 23.12.2023). (In Engl.).

8. Jaeschke M., Humphreys A. E. Standard GERG Virial Equation for Field Use, Simplification of the Input Data Requirements for the GERG Virial Equation — an Alternative Means of Compressibility Factor Calculation for Natural Gases and Similar Mixtures // GERG Technical Monograph. 1992. Vol. 6, no. 266. URL: http://www.gerg.eu/public/uploads/files/publications/technical_monographs/tm5_large.pdf (accessed: 23.12.2023). (In Engl.).

9. Jaeschke M., Hinze H. M., Humphreys A. E. Supplement to the GERG databank of High-Accuracy Compression Factor Measurements // GERG Technical Monograph. 1997. Vol. 6, no. 355. URL: http://www.gerg.eu/public/uploads/files/publications/technical_monographs/tm7_97.pdf (accessed: 25.12.2023). (In Engl.).

10. Kunz O., Klimeck R., Wagner W., Jaeschke M. The GERG- 2004 wide-range equation of state for natural gases and other mixtures // GERG Technical Monograph. 2007. Vol. 6, no. 557. URL: http://www.gerg.eu/public/uploads/files/publications/technical_monographs/tm15_04.pdf. (accessed: 25.12.2023). (In Engl.).

11. Kitayev D. N., Nedobezhkin D. O., Bogdanov V. M. [et al.]. Koeffitsiyent szhimayemosti prirodnogo gaza raschetnogo sostava [Natural gas composition ratio design structure] // Gradostroitel′stvo. Infrastruktura. Kommunikatsii. Gradostroitelstvo. Infrastruktura. Kommunikacii. 2019. No. 1 (14). P. 29–33. EDN: TKKQDQ. (In Russ.).

12. Kutovoy D. Y., Lovtsov P. V., Yatsenko I. A., Mukhametov A. N., Ganiev R. I., Yavkin V. B. Experimental determination of the compressibility factor of natural gas: methods and results // Measurement Techniques. 2021. Vol. 64, no. 9. P. 737–743. DOI: 10.1007/s11018-022-01997-7. (In Engl.).

13. Kutovoy D. Yu., Ganiev R. I., Shustrova M. L., Yavkin V. B., Minnegalieva L. V., Fafurin V. A. Aprobatsiya metodiki opredeleniya koeffitsiyenta szhimayemosti na chistykh sredakh i vozdukhe [Test procedure for determination of compressibility coefficient on pure gases and air] // Yuzhno-Sibirskiy nauchnyy vestnik. South-Siberian Scientific Bulletin. 2023. No. 6. P. 49–54. DOI: 10.25699/SSSB.2023.52.6.003. (In Russ.).

14. GOST 30319.2-96. Gaz prirodnyy. Metody rascheta fizicheskikh svoystv. Opredeleniye koeffitsiyenta szhimayemosti [Natural gas. Methods of calculation of physical properties. Definition of compressibility coefficient]. Minsk, 1996. 61 p. (In Russ.).

15. GOST 30319.2-2015. Gaz prirodnyy. Metody rascheta fizicheskikh svoystv. Opredeleniye koeffitsiyenta szhimayemosti [Natural gas. Methods of calculation of physical properties. Calculation of physical properties on base information on density of standards conditions and nitrogen and carbon dioxide contents]. Moscow, 2016. 13 p. (In Russ.).

16. GOST R 8.662-2009 (ISO 20765-1:2005). Gosudarstvennaya sistema obespecheniya yedinstva izmereniy. Gaz prirodnyy. Termodinamicheskiye svoystva gazovoy fazy. Metody raschetnogo opredeleniya dlya tseley transportirovaniya i raspredeleniya gaza na osnove fundamental′nogo uravneniya sostoyaniya AGA8 [State system for ensuring the uniformity of measurements. Natural gas. Gas phase thermodynamic properties. Methods of calculation for transmission and distribution applications on base of the AGA8 fundamental equation of state]. Moscow, 2010. 41 p. (In Russ.).

17. ISO 20765-2:2015. Natural gas — Calculation of thermodynamic properties. Part 2: Single-phase properties (gas, liquid, and dense fluid) for extended ranges of application. URL: https://www.iso.org/standard/59222.html (accessed: 03.01.2024). (In Engl.).

18. GSSSD MR 118-2005. Raschet plotnosti, faktora szhimayemosti, pokazatelya adiabaty i koeffitsiyenta dinamicheskoy vyazkosti umerenno szhatykh gazovykh smesey [Guidelines. Calculating density, compressibility factor, adiabatic exponent and dynamic viscosity for moderately dense gas mixtures]. Moscow, 2005. 32 p. Dep. CSMC «SRD» 15.09.2005, no. 812a-05kk. (In Russ.).

19. GSSSD MR 113-2003. Opredeleniye plotnosti, faktora szhimayemosti, pokazatelya adiabaty i koeffitsiyenta dinamicheskoy vyazkosti vlazhnogo neftyanogo gaza v diapazone temperatur 263…500 K pri davleniyakh do 15 MPa [Guidelines. determination of density, compressibility factor, adiabate index and dynamic viscosity coefficient of wet petroleum gas in the range of 263...500 K temperatures at pressures up to 15 MPa]. Moscow, 2003. 48 p. Dep. CSMC «SRD»10.06.2003, no. 804-03kk. (In Russ.).


Review

For citations:


Kutovoy D.Yu., Ganiev R.I., Shustrova M.L., Yavkin V.B., Fafurin V.A. Experimental verification of the applicability of methods for calculating the compressibility factor of natural gas at low temperatures. Omsk Scientific Bulletin. 2024;10(2):163-170. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-163-170. EDN: CATICR

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)