Dynamic rationing using agent-based modeling of the assembly process of equipment for nuclear power plants
https://doi.org/10.25206/1813-8225-2023-185-46-52
Abstract
The work is raised as an agent-based model designed to calculate the time spent on the assembly stage of the manufacturing process for manufacturing equipment for nuclear power plants. The article focuses on the need for development, states the justification for research and development of the field of nuclear energy, with repeated facts. The paper uses various approaches to accounting for labor productivity. The concept of a gradual increase in employee fatigue for the development of the technical process is taken as the base. The agents of the model contain the workers and the technological process. The components of programs implemented in the C# language are shown, descriptions of classes are described, their actions to simulate the behavior of agents of a production system. The class diagram shows the selected classes and the relationships between them in terms of inheritance. There is a study of the use of models of a typical assembly process — the assembly of a cabinet frame, consisting of seven main operations. The paper presents structured, empirically analyzed values of fatigue categories and process time for 85 employees in graphical form by operations. It shows an example of an increase in fatigue for one of the employees and a Gantt chart, which can be used to evaluate how the operations went over time. As the output of the agent-based model, the calculated value of the time spent for the entire stage of the technological process of assembling equipment for nuclear power plants is provided. The accuracy of calculations of data convergence, income on the environment in Matlab Mathworks and Microsoft Excel during manual modeling is argued. The agreements state a slight deviation from the data model of the developed agent-based model of a practical experiment carried out as part of the implementation of the contract for the creation of equipment for a new power unit, a causal analysis is carried out. Also, in the applications, exceptional values of some performance indicators are analyzed and attention is focused on the unjustification of classical average approaches in the analysis of overall performance, using several examples. Information is given on the application of the agent model in possible options.
About the Authors
I. A. LoskutovRussian Federation
Moscow
D. A. Skvortsova
Russian Federation
Moscow
V. G. Iskandarova
Russian Federation
Moscow
References
1. Семенов А. С. Мониторинг и оценка потребления энергетических ресурсов // Экономические и управленческие технологии ХХI века: теория и практика, подготовка специалистов: материалы методической и науч.-практ. конф., Санкт-Петербург, 20 ноября 2020 года. Санкт-Петербург: Санкт-Петербургский гос. ун-т промышленных технологий и дизайна. 2020. С. 98–102. ISBN 978-5-91646-192-3.
2. Суслов С. А., Кондратьев М. А., Сергеев К. В. Агентное моделирование как средство анализа и прогноза спроса на энергоресурсы // Проблемы управления. 2010. № 2. С. 46–52.
3. Loskutov I. A. Causes for protracted production of equipment for nuclear power plants // Information Innovative Technologies: Materials of the International scientific — practical conference. Prague. 2018. P. 392–396.
4. Ansolabehere S. [et al.]. The future of nuclear power. Cambridge: Massachusetts Institute of Technology, 2003. 170 p.
5. Schneider M. [et al.]. World Nuclear Industry Status Report 2014. Paris, London, Washington, 2014. 158 p.
6. Johnston G., Duchag A. The Development of the New Idea Safety Guide for Design of Instrumentation and Control Systems for Nuclear Power Plants // Reliability: Theory & Applications. 2017. № 1 (44), Vol. 12. P. 57–65.
7. Билибинская АЭС // АО «Концерн Росэнергоатом». URL: https://www.rosenergoatom.ru/stations_projects/sayt-bilibinskoy-aes/ (дата обращения: 07.07.2021).
8. Циглевкина К. Н., Черных Д. О., Ташлыков О. Л. Возможность применения сбросной теплоты АЭС в тепличном хозяйстве // Перспективные энергетические технологии. Экология, экономика, безопасность и подготовка кадров-2016: материалы науч.-практ. конф., Екатеринбург, 11 октября 2016 года. Екатеринбург: Изд-во Уральского федер. ун-та им. первого Президента России Б. Н. Ельцина, 2016. С. 176–177
9. «О состоянии и использовании водных ресурсов Российской Федерации в 2017 году»: гос. докл. Москва: НИА-Природа, 2018. 298 с.
10. Пергаменщик Б. К. Проблемы и перспективы строительства АЭС // Вестник МГСУ. 2014. № 2. С. 140–153.
11. Managing the First Nuclear Power Plant Project // IAEA-TECDOC-1555. Austria, 2007. 108 p.
12. Сулейманова К. Р. Обзор стилей управления, применяемых на предприятии // ЭТАП: экономическая теория, анализ, практика. 2015. № 4. С. 143–147.
13. Лоскутов И. А. Нормирование сборочно-монтажных работ на предприятиях, разрабатывающих радиоэлектронное оборудование для АЭС // Вестник Дагестанского государственного технического университета. Технические науки. 2019. Т. 46, № 2. С. 89–97. DOI: 10.21822/2073-6185-2019-46-2-89-97.
14. Trentelman H. L., Stoorvogel A. A., Malo H. Control theory for linear systems. Berlin: Springer, 2001. 389 p.
15. Sontag E. D. Mathematical Control Theory. Deterministic Finite Dimensional Systems. Second Edition. New York: Springer, 1998. 530 p.
16. Leigh J. R. Control theory. Second edition. London: The Institution of Electrical Engineers, 2004. 303 p.
Review
For citations:
Loskutov I.A., Skvortsova D.A., Iskandarova V.G. Dynamic rationing using agent-based modeling of the assembly process of equipment for nuclear power plants. Omsk Scientific Bulletin. 2023;(1):46-52. (In Russ.) https://doi.org/10.25206/1813-8225-2023-185-46-52
JATS XML



















