Preview

Omsk Scientific Bulletin

Advanced search

Unified reference system for geometric characteristics dimensional elements of details. Part I. The theory of two dimensions maximum and minimum

https://doi.org/10.25206/1813-8225-2023-187-116-124

EDN: RWJCNA

Abstract

A unified reference system for geometric characteristics is based on the classification of joints of applied mechanics, in which the class number is determined by the number of degrees of freedom limited by mating elements of parts and has received the short term «informativeness». Different information content of the bases of elements that materialize coordinate systems determines different information content of the coordinate axes – four, two, zero and different information content of design planes – three, two, one. The paper shows that the information content of elements in the functions of auxiliary bases and executive elements determines the number and type of coordinates (linear and angular), with the help of which it is necessary to set their position in the generalized coordinate system of the part. It is shown that the accuracy of coordinating dimensions should be specified by symmetrical tolerances for linear and angular dimensions.

About the Authors

V. I. Glukhov
Omsk State Technical University
Russian Federation

GLUKHOV Vladimir Ivanovich, Doctor of Technical Sciences, Associate Professor, Professor of Oil and Gas Engineering, Standardization and Metrology Department

Omsk

AuthorID (SCOPUS): 56503382500

ResearcherID: Q-2030-2016



L. G. Varepo
Omsk State Technical University
Russian Federation

VAREPO Larisa Grigorievna, Doctor of Technical Sciences, Associate Professor, Professor of Oil and Gas Engineering, Standardization and Metrology Department

Omsk

AuthorID (SCOPUS): 56503382500

ResearcherID: Q-2030-2016



References

1. ISO/IEC GUIDE 99:2007 International vocabulary of metrology. Basic and general concepts and associated temps (VIM). URL: https://www.iso.org/standard/45324.html (accessed: 02.03.2023). (In Engl.).

2. ISO 80000-3 Quantities and units – Part 3: Space and time. URL: https://www.iso.org/standard/64974.html (accessed: 02.03.2023). (In Engl.).

3. ISO 10303-203:2011 Industrial automation systems and integration — Product data representation and exchange – Part 203: Application protocol: Configuration controlled 3D design of mechanical parts and assemblies. URL: https://www.iso.org/standard/44305.html (accessed: 02.03.2023). (In Engl.).

4. ISO 1101:2017 Geometrical product specifications (GPS) – Geometrical tolerancing – Tolerances of form, orientation, location and run-out. URL: https://www.iso.org/standard/66777.html (accessed: 02.03.2023). (In Engl.).

5. ISO 5459:2011 Geometrical product specifications (GPS) – Geometrical tolerancing – Datums and datum systems. URL: https://www.iso.org/standard/40358.html (accessed: 02.03.2023). (In Engl.).

6. ISO 14638:2015 Geometrical product specifications (GPS) – Matrix model. URL: https://www.iso.org/standard/57054.html (accessed: 02.03.2023). (In Engl.).

7. ISO 286-1:2010 Geometrical product specifications (GPS) – ISO code system for tolerances on linear sizes – Part 1: Basis of tolerances, deviations and fits. URL: https:// www.iso.org/standard/45975.html (accessed: 02.03.2023). (In Engl.).

8. ISO 492:2014 Rolling bearings – Radial bearings – Geometrical product specifications (GPS) and tolerance values. URL: https://www.iso.org/standard/60356.html (accessed: 02.03.2023). (In Engl.).

9. Henzold G. Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection: A Handbook for Geometrical Product Specification using ISO and ASME standards. 3rd ed. Butterworth-Heinemann, 2021. 463 p. (In Engl.).

10. Simmons C., Maguire D., Phelps N. Manual of Engineering Drawing (Fifth Edition) – British and International Standards. 5th ed. Butterworth-Heinemann, 2020. 608 p. (In Engl.).

11. ASME Y14.5-2009: Dimensioning and Tolerancing. Engineering Drawing and Related Documentation Practices // An international standard. USA, New York: The American Society of Mechanical Engineers, 2009. 215p. (In Engl.).

12. GOST 21495-76. Bazirovaniye i bazy v mashinostroyenii. Terminy i opredeleniya [Locating and bases in machine building industry. Terms and definitions]. Moscow, 1990. 36 p. (In Russ.).

13. Leonard P., Pairel E., Giordano M. A Simpler and More Formal Geometric Tolerancing Model // Procedia CIRP. 2013. Vol. 10 (4). P. 30–36. DOI: 10.1016/j.procir.2013.08.009. (In Engl.).

14. Serrano-Mira J., Rosado-Castellano P., Romero-Subirуn F. [et al]. Incorporation of form deviations into the matrix transformation method for tolerance analysis in assemblies // Procedia Manufacturing. 2019. Vol. 41. P. 547–554. DOI: 10.1016/j.promfg.2019.09.042. (In Engl.).

15. Anwer N., Scott P. J., Srinivasan V. Toward a Classification of Partitioning Operations for Standardization of Geometrical Product Specifications and Verification // Procedia CIRP. 2018. Vol. 75. P. 325–330. (In Engl.).

16. Hidalgo D., Ruiz R. O., Delgadod A. A novel framework for relationship of manufacturing tolerance and componentlevel performance of journal bearings // Applied Mathematical Modelling. 2022. Vol. 105. P. 566–583. (In Engl.).

17. Aschenbrenner A., Wartzack S. A Concept for the Consideration of Dimensional and Geometrical Deviations in the Evaluation of the Internal Clearance of Roller Bearings // Procedia CIRP 43. 2016. P. 256–261. DOI: 10.1016/j.procir.2016.02.003. (In Engl.).

18. Glukhov V. I., Kondashevskij V. V. System zur festlegung von lagetoleranzen werkstückoberflächen // Wissenchaftlicke Gesellschaft fur MeBtechnik und Automatisierung in der Kammer der Technik: VI Oberflachenkolloquim mit internationaler Beteiligung. D.D.R, Karl-Marx-Stadt, 1984. S. 4/1–4/11. (In Germ.).

19. Glukhov V. I. Povysheniye tochnosti izmereniy v mashinostroyenii na osnove vvedeniya novykh kompleksnykh pokazateley deystvitel’nykh razmerov detaley [Improvement of measurement accuracy in mechanical engineering through the introduction of new complex measures of actual part dimensions]. Moscow, 1998. 370 p. (In Russ.).

20. Glukhov V. I. Kompleksnyye pokazateli razmernoy i geometricheskoy tochnosti detaley mashin [Comprehensive dimensional indicators and geometric accuracy figures for machine parts] // Vestnik mashinostroyeniya. Vestnik Mashinostroyeniya. 1998. No. 4. P. 3–7. (In Russ.).

21. Glukhov V. I. Metodologiya dostovernykh izmereniy razmerov detaley [Methodology for reliable measurement of workpiece dimensions] // Izmeritel’naya tekhnika. Metrology. 1998. No. 5. P. 9–13. (In Russ.).

22. Glukhov V. I. Koordiniruyushchiye razmery detaley i ikh izmereniye [Coordinate part dimensions and their measurement] // Izmeritel’naya tekhnika. Metrology. 1998. No. 7. P. 18–22. (In Russ.).

23. Glukhov V. I. Geometrical product specifications: Alternative standardization principles, coordinate systems, models, classification and verification // Dynamics of Systems, Mechanisms and Machines, Dynamics. 2014. DOI: 10.1109/ Dynamics.2014.7005655. (In Engl.).

24. Glukhov V. I., Ivleva I. A., Zlatkina O. Y. Geometrical product specifications. Datums and coordinate systems // Journal of Physics Conference Series. 2017. Vol. 858 (1). 012013. DOI: 10.1088/1742-6596/858/1/012013. (In Engl.).

25. Glukhov V. I., Pushkarev V. V., Khomchenko V. G. Geometric modeling in the problem of ball bearing accuracy // Journal of Physics Conference Series. 2017. Vol. 858 (1). 012014. DOI: 10.1088/1742-6596/858/1/012014. (In Engl.).

26. Glukhov V. I., Varepo L. G., Nagornova I. V., Doro- nin F. A. Strength and geometry parameters accuracy improvement of 3D-printed polymer gears // Journal of Physics: Conference Series. 2019. Vol. 1260 (3). 032019. DOI: 10.1088/17426596/1260/3/032019. (In Engl.).

27. Glukhov V. I., Varepo L. G., Shalay V. V., Grinevich V. A. New matrix for geometrical product specifications on coordinate basis // Journal of Physics: Conference Series. 2020. Vol. 1441 (1). 012061. DOI: 10.1088/1742-6596/1441/1/012061. (In Engl.).

28. Glukhov V. I., Grinevich V. A., Shalay V. V. The linear sizes tolerances and fits system modernization // Journal of Physics: Conference Series. 2018. Vol. 998. (1). 012012. DOI: 10.1088/1742-6596/998/1/012012. (In Engl.).

29. Taylor F. W. The Principles of Scientific Management. New York; London: Harper, 1911. 144 p. (In Engl.).

30. ISO 1938-1:2015 Geometrical product specifications (GPS) – Dimensional measuring equipment – Part 1: Plain limit gauges of linear size. URL: https://www.iso.org/standard/41132.html (accessed: 02.03.2023). (In Engl.).

31. COST 22696-77. Podshipniki kacheniya. Roliki tsilindricheskiye korotkiye. Tekhnicheskiye trebovaniya [Rolling bearings. Short cylindrical rollers. Technical requirements]. Moscow, 1982. 16 p. (In Russ.).

32. COST 24643-81. Osnovnyye normy vzaimozamenyayemosti. Dopuski formy i raspolozheniya poverkhnostey. Chislovyye znacheniya [Basic norms of interchangeability. Tolerances of form and position of surfaces. Numerical values]. Moscow, 2004. 10 p. (In Russ.).

33. COST 8908-81. Osnovnyye normy vzaimozamenyayemosti. Normal’nyye ugly i dopuski uglov [Basic norms of interchangeability. Standart angles and angle telerances]. Moscow, 1981. 16 p. (In Russ.).

34. COST 2.412-81. Edinaya sistema konstruktorskoy dokumentatsii. Pravila vypolneniya chertezhey i skhem opticheskikh izdeliy [Unified system for design documentation. Rules for making drawings and diagrams of optical products]. Moscow, 2011. 16 p. (In Russ.).


Review

For citations:


Glukhov V.I., Varepo L.G. Unified reference system for geometric characteristics dimensional elements of details. Part I. The theory of two dimensions maximum and minimum. Omsk Scientific Bulletin. 2023;(3):116-124. (In Russ.) https://doi.org/10.25206/1813-8225-2023-187-116-124. EDN: RWJCNA

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)