Preview

Omsk Scientific Bulletin

Advanced search

Determining the nonlinear damping function using experiments

https://doi.org/10.25206/1813-8225-2024-191-5-13

EDN: GRFNGU

Abstract

In this article, the coefficients of the nonlinear damping function of a mechanical system with one translational degree of freedom are determined from an experimentally obtained oscillogram of free vibrations. The function is modeled using three types of damping: coulomb damping, linear viscous, and nonlinear viscous damping. Numerical values of the damping coefficients are identified. The characteristic of the dissipative force as a function of displacement is obtained, and is used to find the amount of energy dissipated over a time period. An equivalent relative damping ratio is approximated using the energy balance method and then used to perform numerical integration of the equation of motion. A satisfactory match of the envelope curve and the phase of the vibrational process is demonstrated by comparing the calculated oscillogram to the experimental one. The damping function parameters can be further refined by approximating the experimental amplitudes. The obtained value of the relative damping coefficient can be used to solve nonlinear problems in the area of dynamics of weakly damped systems.

About the Authors

B. A. Kalashnikov
Omsk State Technical University
Russian Federation

Kalashnikov Boris Aleksandrovich 0 Doctor of Technical Sciences, Associate Professor, Professor of Aircraft and Rocket Building Department, SPIN-code: 7574-1323. AuthorID (SCOPUS): 6701318766. ResearcherID: M-9643-2014.

Omsk



V. V. Bokhan
Omsk State Technical University; JSC «Federal Research and Production Center «Progress»
Russian Federation

Bokhan        Vladimir      Victorovich - Candidate  of Technical Sciences, Senior Lecturer of Fundamentals of Mechanics Theory and Automatic Control Department, OmSTU; Senior Researcher, JSC «Federal Research and Production Center «Progress». SPIN-code: 3625-7966. AuthorID (RSCI): 747705. ResearcherID: P-3030-2017

Omsk



K. V. Penkov
Omsk State Technical University
Russian Federation

Penkov Konstantin Vadimovich - Graduate Student of Fundamentals of Mechanics Theory and Automatic Control Department, OmSTU, ResearcherID: LDG-2742-2024.

Omsk



References

1. Cao M. S., Sha G. G., Gao Y. F. [et al.] Structural damage identification using damping: a compendium of uses and features // Smart Materials and Structures. 2017. Vol. 26 (4). 043001. DOI: 10.1088/1361-665X/aa550a. (In Engl.).

2. Erickson D., Weber M., Sharf I. Contact stiffness and damping estimation for robotic systems // The International Journal of Robotics Research. 2003. Vol. 22 (1). P. 41–58. DOI: 10.1177/0278364903022001004. (In Engl.).

3. Mohammad A. E. K., Uchiyama N., Sano S. Reduction of electrical energy consumed by feed-drive systems using slidingmode control with a nonlinear sliding surface // IEEE Transactions on Industrial Electronics.. 2014. Vol. 61 (6). P. 2875–2882. DOI: 10.1109/TIE.2013.2275975. (In Engl.).

4. Ma J., Sun Y., Yuan X. [et al.]. Dynamics and collapse in a power system model with voltage variation: The damping effect // PLOS ONE. 2016. Vol. 11 (11). e0165943. DOI: 10.1371/journal.pone.0165943. (In Engl.).

5. Prasertwong K., Mithulananthan N. A New Algorithm Based on Logarithm Decrement to Estimate the Damping Ratio for Power System Oscillation // 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 2017. DOI: 10.1109/ECTICon.2017.8096288. (In Engl.).

6. Lin R., Zhu J. Model updating of damped structures using FRF data // Mechanical Systems and Signal Processing. 2006. Vol. 20 (8). P. 2200–2218. DOI: 10.1016/j.ymssp.2006.05.008. (In Engl.).

7. Qiao G., Rahmatalla S. Identification of damping and stiffness parameters of cervical and lumbar spines of supine humans under vertical whole-body vibration // Journal of Low Frequency Noise Vibration and Active Control. 2019. Vol. 39 (1). P. 59–71. DOI: 10.1177/1461348419837031. (In Engl.).

8. Minetti A. E., Moorhead A. P., Pavei G. Frictional internal work of damped limbs oscillation in human locomotion // Proceedings of the Royal Society B. 2020. Vol. 287 (1931). P. 20201410. DOI: 10.1098/rspb.2020.1410. (In Engl.).

9. Gupta T. Identification and experimental validation of damping ratios of different human body segments through anthropometric vibratory model in standing posture // Journal of Biomechanical Engineering. 2006. Vol. 129 (4). P. 566–574. DOI: 10.1115/1.2720917. (In Engl.).

10. Moore J. R., Maguire D. A. Natural sway frequencies and damping ratios of trees: concepts, review and synthesis of previous studies // Trees. 2004. Vol. 18 (2). P. 195–203. DOI: 10.1007/s00468-003-0295-6. (In Engl.).

11. Polunin P. M., Yang Y., Dykman M. I. [et al.]. Characterization of MEMS resonator nonlinearities using the ringdown response // Journal of Microelectromechanical Systems. 2016. Vol. 25 (2). P. 297–303. DOI: 10.1109/JMEMS.2016.2529296. (In Engl.).

12. Mo Y., Du L., Qu B. [et al.]. Damping ratio analysis of a silicon capacitive micromechanical accelerometer // Wireless Sensor Network. 2017. Vol. 09 (05). P. 178–188. DOI: 10.4236/wsn.2017.95010. (In Engl.).

13. Salamon R., Kamin´ski H., Fritzkowski P. Еstimation оf parameters of various damping models in planar motion of a pendulum // Meccanica. 2020. Vol. 55. P. 1655–1677. DOI: 10.1007/s11012-020-01197-z. (In Engl.).

14. Kauderer G. Nelineynaya mekhanika [Nonlinear mechanics]: trans. from German. Moscow, 1961. 779 p. (In Russ.).

15. Vibratsii v tekhnike: spravochnik. V 6 t. [Vibrations in Engineering: handbook. In 6 vols. / Ed. Board: V. N. Chelomey (Chairman, Chief ed.) [et al.]). Moscow, 1979– 1981. T. 2. Kolebaniya nelineynykh mekhanicheskikh sistem [Vol. 2. Fluctuations of nonlinear mechanical systems] / Ed. By I. I. Blekhmana. Moscow, 1979. 351 p. (In Russ.).

16. Makarov V. A. Raschet parametrov dissipativnoy funktsii po ogibayushchey eksperimental’noy vibrogrammy [Calculation of the parameters of the dissipative Function from the Envelope of the experimental vibrogram] // Mashinovedenie. Mashinovedenie. 1988. No. 5. P. 98–99. (In Russ.).

17. Landau L. D., Lifshits E. M. Teoreticheskaya fizika. V 10 t. T. 6. Gidrodinamika [Theoretical physics. In 10 vols. Vol. 6. Hydrodynamics]. 3rd ed., revised. Moscow, 1986. 736 p. (In Russ.).

18. Randall D. Peters. Nonlinear Damping of the 'Linear' Pendulum. 2003. DOI: 10.48550/arXiv.physics/0306081. (In Engl.).

19. Dzhilavdari I. Z., Rusak A. A. Izmereniye sil treniya metodom approksimatsii ogibayushchey [Measurement of friction forces by a method approximating of envelope curve] // Trenie i iznos. Friction and Wear. 2000. Vol. 21, no. 4. P. 424–432. EDN: WXJZKB. (In Russ.).

20. Myers A. D., Khasawneh F. A. Damping parameter estimation using topological signal processing // Mechanical Systems and Signal Processing. 2022. Vol. 174. 109042. DOI: 10.1016/j.ymssp.2022.109042. (In Engl.).

21. Panovko Ya. G. Vvedeniye v teoriyu mekhanicheskikh kolebaniy [Introduction to the theory of mechanical vibrations]. 3rd ed., revised. Moscow, 1991. 252 p. ISBN 5-02-014137-2. (In Russ.).


Review

For citations:


Kalashnikov B.A., Bokhan V.V., Penkov K.V. Determining the nonlinear damping function using experiments. Omsk Scientific Bulletin. 2024;(3):5-13. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-5-13. EDN: GRFNGU

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)