Qualitative modification of geometrically oriented methods for constructing spatial curves in C3D FairCurveModeler
https://doi.org/10.25206/1813-8225-2024-191-48-55
EDN: TJTAFT
Abstract
The article provides a detailed algorithm for improving the C3D FairCurveModeler commands for constructing a class F spatial curve with approximation by a rational cubic spline Bezier curve (NURBzS-curve) and with approximation by a highdegree B-spline curve. The improvement is achieved by optimizing the structure of the Hermite spatial Geometric Determinant when defining it on a spatial virtual curve (V-curve) created on a set of double-tap conical curves. The structure of the Hermite Geometric Determinant is improved by changing the direction of the tangents, taking into account the spatial directions of the tangents at the end points of the conic segments at the step of constructing the set of double-tap conical curves.
To demonstrate the modified method, the work shows
1) Improving the quality of a conical spiral modeled by the regular _Helix command of CAD systems ZWCAD, BricsCAD, AutoCAD by using the C3D FairCurveModeler command for creating a NURBzS-curve.
2) Construction of a B-spline curve of the 8th degree on the points of a conical spiral by the C3D FairCurveModeler command and comparison with similar constructions in the CAD systems 'Rhino Ceros D', 'Alias Design Studio', NX which declare the construction of high quality curves (class A).
About the Authors
V. G. MufteevRussian Federation
Mufteev Valeriyan Gajnizamanovich - Candidate of Technical Sciences, Leading Mathematician Programmer, LLC «C3D Labs», SPIN-code: 7361-8032. AuthorID (RSCI):1006623
Moscow
F. T. Ziganshina
Russian Federation
Ziganshina Fairuza Tahvalovna - Candidate of Physical and Mathematical Sciences, Associate Professor, Head of Integrated Engineering and Computer Graphics Department, USPTU, SPIN-code: 6326-3600. AuthorID (RSCI): 866017. AuthorID (SCOPUS): 57215302498.
Ufa
V. I. Gumerov
Russian Federation
Gumerov Vadim Ildarovich - Independent Researcher.
Ufa.
R. I. Nabiev
Russian Federation
Nabiev Rifkat Ilshatovich - Candidate of Technical Sciences, Associate Professor, Associate Professor of Management and Service in Technical Systems Department, USPTU, SPIN-code: 4883-7004. AuthorID (RSCI): 391526.
Ufa
G. M. Efimova
Russian Federation
Efimova Gulsia Maratovna - Senior Lecturer of Integrated Engineering and Computer Graphics Department, USPTU, SPIN-code: 3898-7937. AuthorID (RSCI): 836063.
Ufa
References
1. Schoenberg I. J. Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation.a second class of analytic approximation formulae // Quart. Appl. Math. 1946.Vol. 4, № 2. P. 112–141. URL: https://www.ams.org/journals/qam/194604-02/S0033-569X-1946-16705-2/S0033-569X-1946-16705-2.pdf (accessed: 05.11.2023). (In Engl.).
2. Schoenberg I. J. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation.a first class of analytic approximation formulae // Quart. Appl. Math. 1946. Vol. 4, no. 1. P. 45–99. URL: https://www.ams.org/journals/qam/194604-01/S0033-569X-1946-15914-5/S0033-569X-1946-15914-5.pdf (accessed: 05.11.2023). (In Engl.).
3. Zavyalov Yu. S. Metody splayn funktsiy [Spline function methods] / Ed. by N. N. Yanenko. Moscow, 1980, 352 p. (In Russ.).
4. Bor K. Prakticheskoye rukovodstvo po splaynam [A practical guide to splines] / trans. from Engl. V. K. Galitskogo, S. A. Shestakova; ed. by V. I. Skurikhina. Moscow, 1985. 304 p. (In Russ.).
5. Zavyalov Yu. S. Splayny v inzhenernoy geometrii [Splines in engineering geometry]. Moscow, 1985. 224 p. (In Russ.).
6. Foks A., Pratt M. Vychislitel’naya geometriya. Primeneniye v proyektirovanii i na proizvodstve [Computational Geometry. Applications in design and manufacturing] / trans. from Engl. G. P. Babenko, G. P. Voskresenskogo. Moscow, 1982. 304 p. (In Russ.).
7. Matematika i SAPR. V 2 kn. [Mathematics and CAD. In 2 bks.] // trans. from Fr. S. D. Chigirya. Moscow, 1980. Bk. 1. 204 p. ISBN 5-03-000417-3. (In Russ.).
8. Matematika i SAPR. V 2 kn. [Mathematics and CAD. In 2 bks.] // trans. from Fr. V. V. Kovalenko, S. D. Chigirya. Moscow, 1980. Bk. 2. 260 p. ISBN 5-03-000465-3. (In Russ.).
9. Piegl L., Tiller W. The NURBS Book. 2nd ed. Springer Verlag, 1997. 660 p. (In Engl.).
10. Rodzhers D., Adams Dzh. Matematicheskiye osnovy mashinnoy grafiki [Mathematical foundations of machine graphics] / trans. from Engl. P. A. Monakhova. Moscow, 2001. 604 p. ISBN 5-03-002143-4. (In Russ.).
11. Grebennikov A. I. Metod splaynov i resheniye nekorrektnykh zadach teorii priblizheniy [Method of splines and solution of incorrect problems of approximation theory]. Moscow, 1983. 208 p. (In Russ.).
12. Kvasov B. I. Metody izogeometricheskoy approksimatsii splaynami [Methods of isogeometric approximation by splines]. Moscow. 2006. 416 p. ISBN 978-5-93972-416-6. (In Russ.).
13. Karavelas M. I., Kaklis P. D. Spatial shape-preserving interpolation using — splines // Numerical Algorithms. 2000. No. 23 (2). P. 217–250. (In Engl.).
14. Karim S. A. A., Pang K. V. Shape Preserving Interpolation Using Spline Rational Cubic // Journal of Applied Mathematics.
15. Mufteyev V. G. Modelirovaniye krivykh vysokogo kachestva na osnove V-krivykh [Modeling of high quality curved lines] // Prikladnaya geometriya. Applied Geometry. 2007. No. 9 (19). P. 25–74. EDN: ZXMXFL. (In Russ.).
16. Mufteyev V., Maksimenko A. Funktsional’nyye krivyye vysokogo kachestva — innovatsiya v geometricheskom modelirovanii ot C3D Labs [High quality functional curves — an innovation in geometric modeling from C3D Labs] // SAPR i grafika. CAD and Graphics. 2021. No. 5 (295). P. 62–72. EDN: ZFNGJI. (In Russ.).
17. Mufteyev V. G., Maksimenko A. E., Akhmetshin R. I. [et al.]. Prikladnyye SAPR i prilozheniya na osnove geometricheskogo yadra C3D dlya proyektirovaniya izdeliy s funktsional’nymi krivymi [Applied CAD systems and applications based on the C3D geometric modeling kernel, used for the design of products with functional curves] // Grafikon. GraphiCon. 2021. No. 31. P. 75–87. DOI: 10.20948/graphicon-2021-1-75-87. EDN: NWTYDG. (In Russ.).
18. Mufteyev V. G., Mardanov A. R. Modelirovaniye krivykh liniy vysokogo kachestva [Modeling of high quality curved lines] // Prikladnaya geometriya. Applied Geometry. 2006. No. 8 (18). P. 37–66. EDN: ZWKAKR. (In Russ.).
19. Kotov I. I. Nachertatel’naya geometriya (na printsipakh programmirovannogo obucheniya) [Descriptive geometry (based on the principles of programmed learning)]. Moscow, 1970. 384 p. (In Russ.).
20. Kotov I. I. Approksimatsiya pyatii shestiparametricheskimi krivymi [Approximation by fiveand six-parameter curves] // Kibernetika grafiki i prikladnaya geometriya poverkhnostey. Vyp. 12. Trudy Moskovskogo aviatsionnogo instituta imeni S. Ordzhonikidze. Graphics Cybernetics and Applied Surface Geometry. Issue 12. Proceedings of the Moscow Aviation Institute named after S. Ordzhonikidze. 1975. Issue 331. P. 39–49. (In Russ.).
21. Kompaniya ZWSOFT. Company ZWSOFT. URL: https://sapr-soft.ru/ (accessed: 05.11.2023). (In Russ.).
22. BricsCAD. URL: https://www.bricsys.com/ (accessed: 05.11.2023). (In Engl.).
23. Autodesk AutoCAD // AutoCAD. URL: https://www.autodesk.com/products/autocad/overview?term=1YEAR&tab=subscription (accessed: 05.11.2023). (In Engl.).
24. C3D ToolKit//C3D Labs. URL: https://c3dlabs.com/en/products/c3d-toolkit/ (accessed: 05.11.2023). (In Engl.).
25. Mufteyev V. G., Mardanov A. R. Izogeometricheskoye modelirovaniye krivykh liniyi poverkhnostey vysokogo kachestva po bazovym kriteriyam plavnosti [Isogeometric modeling of curved lines and surfaces of high quality by basic smoothness criteria] // Informatika, kibernetika i vychislitel’naya tekhnika. Informatics, Cybernetics and Computer Science. 2009. Issue 10 (153). P. 131–145. (In Russ.).
26. Rhino Ceros 3D. URL: https://www.rhino3d.com/ (accessed: 05.11.2023). (In Engl.).
27. Alias Design Studio// Autodesk. URL: https://www. autodesk.com/products/alias-products/overview?term=1YEAR&tab=subscription (accessed: 05.11.2023). (In Engl.).
28. NX CAD and CAM software // Siemens. URL: https://plm.sw.siemens.com/en-US/nx/ (accessed: 05.11.2023). (In Engl.). 2016. Vol. 2016 (3). P. 1–14. DOI: 10.1155/2016/4875358. (In Engl.).
Review
For citations:
Mufteev V.G., Ziganshina F.T., Gumerov V.I., Nabiev R.I., Efimova G.M. Qualitative modification of geometrically oriented methods for constructing spatial curves in C3D FairCurveModeler. Omsk Scientific Bulletin. 2024;(3):48-55. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-48-55. EDN: TJTAFT
JATS XML




















