Preview

Omsk Scientific Bulletin

Advanced search

Assessment of the accuracy of open digital terrain models

https://doi.org/10.25206/1813-8225-2024-191-64-72

EDN: BLATBJ

Abstract

Prompt receipt of reliable information about the terrain with sufficient detail is one of the main tasks in the fields of national economy, territorial development or research of large territorial units. The multiplicity of error sources in Earth remote sensing materials is due to a number of factors, and the resulting terrain models have a certain degree of generalization, which directly affects the correctness of digital terrain models. This article is devoted to the analysis of existing methods for estimating errors of open digital terrain models in order to increase their accuracy. Correct digital elevation models have a high similarity to reality and can be used in regional studies to determine the morphometric indicators of the territory.

About the Authors

A. S. Korotin
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Korotin Anton Sergeevich - Senior Lecturer of Geoinformatics, Geodesy and Cadastre Department, NNGASU, SPIN-code: 8401-4026. AuthorID (RSCI): 808295. AuthorID (SCOPUS): 57216799168. ResearcherID: JHS-4533-2023.

Nizhny Novgorod



E. V. Popov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Popov Evgeny Vladimirovich - Doctor of Technical Sciences, Professor, Professor of Engineering Graphics and Information Modeling Department, NNGASU, SPIN-code: 8156-5998. AuthorID (RSCI): 663542. AuthorID (SCOPUS): 56585437200. ResearcherID: F-6001-2013.

Nizhny Novgorod



References

1. Pavlova A. I. Analiz metodov interpolirovaniya vysot tochek dlya sozdaniya tsifrovykh modeley rel’yefa [Analysis of elevation interpolation methods for creating digital elevation models] // Avtometriya. Avtometriya. 2017. Vol. 53, no. 2. P. 86–94. DOI: 10.15372/AUT20170210. EDN: YKFYZB. (In Russ.).

2. Kapralov E. G., Koshkarev A. V., Tikunov V. S. [et al.]. Geoinformatika [Geoinformatics] / Ed. by V. S. Tikunova. Moscow, 2010. 391 p. ISBN 978-5-7695-6468-0. (In Russ.).

3. Khromykh V. V., Khromykh O. V. Opyt avtomatizirovannogo morfometricheskogo analiza dolinnykh geosistem Yuzhnogo Pritom’ya na osnove tsifrovoy modeli rel’yefa [The experience of automized morphometric analysis of geosystems based on digital elevation model of the tom valley] // Vestnik Tomskogo gosudarstvennogo universiteta. Tomsk State University Journal. 2007. No. 298. P. 208–210. EDN: KHNFOP. (In Russ.).

4. Jarvis A., Rubiano J., Nelson A. [et al.]. Practical use of SRTM data in the tropics – Comparisons with digital elevation models generated from cartographic data // Centro International de Agricultura Tropical (CIAT). Cali, Colombia, 2004. No. 198. 36 p. (In Engl.).

5. Tachikawa T., Kaku M., Iwasaki A. [et al.]. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results // Archive Center and the Joint Japan-US ASTER Science Team. 2011. 28 p. URL: https://www.researchgate.net/publication/255280829_ASTER_Global_Digital_Elevation_Model_Version_2_-_Summary_of_validation_results (accessed: 01.10.2023). (In Engl.).

6. Song C., Fan C., Zhu J. [et al.]. A comprehensive geospatial database of nearly 100 000 reservoirs in China // Earth System Science Data. 2022. No. 14 (9). P. 4017–4034. DOI: 10.5194/essd-14-4017-2022. (In Engl.).

7. Pavlova A. N. Geoinformatsionnoye modelirovaniye rechnogo basseyna po dannym sputnikovoy s”yemki STRM (na primere basseyna r. Tereshki) [Geoinformation modeling of the river basin based on STRM satellite imagery data (on the example of the Tereshki River basin)] // Izvestiya Saratovskogo universiteta. Nauki o Zemle. Izvestiya of Saratov University. Earth Sciences. 2009. Vol. 9, no. 1. P. 39–44. EDN: JVCBHW. (In Russ.).

8. Yamazaki D., Ikeshima D., Tawatari R. [et al.]. A highaccuracy map of global terrain elevations // Geophysical Research Letters. 2017. No. 44 (11). P. 5844–5853. DOI: 10.1002/2017GL072874. (In Engl.).

9. Korotin A. S., Popov E. V. Otsenka tochnosti tsifrovykh modeley rel’yefa, primenyayemykh dlya territorial’nykh issledovaniy [Evaluation of precision of digital elevation models used for territorial studies] // GRAFIKON’2015. GRAPHICON’ 2015. Moscow, 2015. P. 102–106. EDN: UNFQOB. (In Russ.).

10. Chernikhovskiy D. M. Otsenka svyazey morfometricheskikh kharakteristik rel’yefa s kolichestvennymi i kachestvennymi kharakteristikami lesov na osnove tsifrovykh modeley rel’yefa ASTER i SRTM [Assessment of relationships of morphometric characteristics of relief with quantitative and qualitative characteristics of forests based on digital elevation models ASTER and SRTM] // Sibirskiy lesnoy zhurnal. Siberian Journal of Forest Science. 2007. No. 3. P. 28–39. (In Russ.).

11. Lefsky M. A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System // Geophysical Research Letters. 2010. No. 37 (15). P. 1–5. DOI: 10.1029/2010GL043622. (In Engl.).

12. Huili C., Qiuhua L., Yong L. [et al.]. Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling // Journal of Hydrology. 2018. Vol. 559. P. 56–70. DOI: 10.1016/j.jhydrol.2018.01.056. (In Engl.).

13. Hirt C. Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs // Remote Sensing of Environment. 2018. Vol. 207. P. 27–41. DOI: 10.1016/j.rse.2017.12.037. (In Engl.).

14. Takaku J., Iwasaki A., Tadono T. Adaptive filter for improving quality of ALOS PRISM DSM // International Geoscience and Remote Sensing Symposium (IGARSS). 2016. P. 5370–5373. DOI: 10.1109/IGARSS.2016.7730399. (In Engl.).

15. Robinson N., Regetz J., Guralnick R. P. EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data // Journal of Photogrammetry and Remote Sensing. 2014. No. 87. P. 57–67. DOI: 10.1016/j.isprsjprs.2013.11.002. (In Engl.).

16. Korotin A. S., Popov E. V. Rekonstruktsiya mestnosti na osnove otkorrektirovannykh tsifrovykh modeley rel’yefa [Terrain reconstruction based on corrected digital elevation models] // Problemy mashinovedeniya. Problems of Mechanical Engineering. Omsk, 2019. P. 283–289. EDN: ZHFUDB. (In Russ.).

17. Gesch D., Oimoen M., Danielson J. [et al.]. Validation of the ASTER global digital elevation model version 3 over the conterminous United States // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic, 2016. Vol. XLI-B4. P. 143–148. DOI: 10.5194/isprs-archives-XLI-B4-143-2016. (In Engl.).

18. Reuter H. I., Nelson A., Jarvis A. An evaluation of voidfilling interpolation methods for SRTM data // International Journal of Geographical Information Science. 2007. No. 21 (9). P. 983–1008. DOI: 10.1080/13658810601169899. (In Engl.).

19. Bonin O., Rousseaux F. Digital terrain model computation from contour lines: how to derive quality information from artifact analysis // Geoinformatica. 2005. No. 9 (3). P. 253–268. DOI: 10.1007/s10707-005-1284-2. (In Engl.).

20. Oksanen J., Sarjakoski T. Uncovering the statistical and spatial characteristics of fine toposcale DEM error // International Journal of Geographical Information Science. 2006. No. 20 (4). P. 345–369. DOI: 10.1080/13658810500433891. (In Engl.).

21. Monckton C. G. An investigation into the spatial structure of error in digital elevation data // Innovations in GIS. London, 1994. P. 201–211. ISBN 978-0-429-20439-5. (In Engl.).

22. Wise S. Assessing the quality for hydrological applications of digital elevation models derived from contours // Hydrological Processes. 2000. No. 14 (11–12). P. 1909–1929. DOI: 10.1002/10991085(20000815/30)14:11/123.0.CO;2-6. (In Engl.).

23. Wise S. M., Lane S. N., Richards K. S. [et al.]. The effect of GIS interpolation errors on the use of DEMs in geomorphology // Landform Monitoring, Modeling and Analysis. Wiley, Chichester, 1998. P. 139–164. ISBN 978-0-471-96977-8. (In Engl.).

24. Florinsky I. V. Errors of signal processing in digital terrain modeling // International Journal of Geographical Information Science. 2002. No. 16 (5). P. 475–501. DOI: 10.1080/13658810210129139. (In Engl.).

25. Dvorkin B. A., Dudkin S. A. Noveyshiye i perspektivnyye sputniki distantsionnogo zondirovaniya Zemli [Up-to-date and advanced remote sensing satellites] // Geomatika. Geomatics. 2013. No. 2. P. 16–36. EDN: SVUTID. (In Russ.).

26. Wise S. Cross-validation as a means of investigating DEM interpolation error // Computers & Geosciences. 2011. Vol. 37, no. 8. P. 987–991. DOI: 10.1016/j.cageo.2010.12.002. (In Engl.).

27. Sonyushkin A. V. Sovershenstvovaniye tekhnologiy sozdaniya ortofotoplanov po kosmicheskim izobrazheniyam vysokogo razresheniya [Improvement of technologies for creating orthophotomaps from high-resolution space images]. Moscow, 2015. 117 p. (In Russ.).


Review

For citations:


Korotin A.S., Popov E.V. Assessment of the accuracy of open digital terrain models. Omsk Scientific Bulletin. 2024;(3):64-72. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-64-72. EDN: BLATBJ

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)