Modeling the boundaries of the working space of a planar three-link manipulator
https://doi.org/10.25206/1813-8225-2024-191-73-81
EDN: PBNXWQ
Abstract
A study of the boundaries of the working space of a three-link planar manipulator, specified by analytical equations, is carried out. A new geometric interpretation of these samples is proposed. On its basis, it is established that outer space consists of two-parameter volumes of eccentric and concentric circles. When transforming such environments into four-dimensional space, two types of hypersurfaces are obtained, which represent a geometric model of the manipulator's workspace. The discriminants of these hypersurfaces on the hyperplane are two two-dimensional surfaces. Both an analytical description of these surfaces and their computer models are obtained. As a result, it is established that the boundaries of the working space on the plane of the mechanism are the discriminants of such surfaces. To confirm the reliability of the results obtained, as an example, an inverse kinematics problem is solved on discriminant surfaces — the values of generalized coordinates at the boundary points of the manipulator’s workspace are determined for their given Cartesian coordinates.
About the Authors
T. A. ShevelevaRussian Federation
Sheveleva Tatyana Anatolyevna - Graduate Student of Engineering Geometry and CAD Department, OmSTU.
Omsk
A. A. Lyashkov
Russian Federation
Lyashkov Aleksey Anufriyevich - Doctor of Technical Sciences, Associate Professor, Professor of Engineering Geometry and CAD Department, OmSTU, SPIN-code: 2377-7912. AuthorID (SCOPUS): 55237710400. ResearcherID: C-2426-2017.
Omsk
References
1. Duka A. V. Neural network based inverse kinematics solution for trajectory tracking of a robotic arm // Procedia Technology. 2014. Vol. 12. P. 20–27. DOI: 10.1016/j.protcy.2013.12.451. (In Engl.).
2. Zenkevich S. L., Yushchenko A. S. Osnovy upravleniya manipulyatsionnymi robotami [Fundamentals of manipulative robot control]. Moscow, 2004. 478 p. (In Russ.).
3. Zar T., Lin P. W., Win S. Y. Workspace Analysis of Twolink Planar Manipulator // International Journal of Science and Engineering Applications. 2019. Vol. 8. P. 380–383. DOI: 10.7753/IJSEA0808.1028. (In Engl.).
4. Lyashkov A. A., Sheveleva T. A. Modelirovaniye rabochego prostranstva planarnogo dvukhzvennogo manipulyatora sredstvami komp’yuternoy grafiki [Modeling the workspace of a threelink planar manipulator] // Avtomatizatsiya v promyshlennosti. Automation in Industry. 2023. No. 12. P. 46–50. DOI: 10.25728/avtprom.2023.12.08. EDN: ORUSIA. (In Russ.)
5. Ottaviano E., Husty M., Ceccarelli M. Identification of the Workspace Boundary of a General 3-R Manipulator // Journal of Mechanical Design. 2006. Vol. 128 (1). DOI: 10.1115/1.2120807. (In Engl.).
6. Ceccarelli M. A synthesis algorithm for threerevolute manipulators by using an algebraic formulation of workspace boundary // Journal of mechanical design. Vol. 117 (2A). Р. 298–302. URL: https://www.dmg-lib.org/dmglib/streambook/index.jsp?bookid=23666009 (accessed: 11.02.2024). (In Engl.).
7. Ottaviano E., Ceccarelli M., Lanni C. A Characterization of Ring Void in Workspace of Three-Revolute Manipulators // Proceedings 10th World Congress on the Theory of Machines and Mechanisms. 1999. Vol. 3. P. 1039–1044. (In Engl.).
8. Burdick J. W. A Classification of 3R Regional Manipulator Singularities and Geometries // Proceedings. 1991 IEEE International Conference on Robotics and Automation. 1991. Vol. 3. P. 2670–2675. DOI: 10.1109/ROBOT.1991.132033. (In Engl.).
9. Lanni C., Saramago S., Ceccarelli M. Optimum Design of General 3R Manipulators by Using Traditional and Random Search Optimization Techniques // Journal of the Brazilian Society of Mechanical Sciences. 2002. Vol. 24. P. 293–301. (In Engl.).
10. Bastien J. Description analytique complète des limites de l’espace de travail pour un manipulateur en série plan // Comptes Rendus Mécanique. 2018. Vol. 346. P. 13–25. DOI:10.1016/j.crme.2017.10.004. (In Engl.).
11. Goyal K., Sethi D. An analytical method to find workspace of a robotic manipulator // Journal of Mechanical Engineering. 2010. Vol. 41 (1). DOI: 10.3329/jme.v41i1.5359. (In Engl.).
12. Serweryouns S., Hasan D. S. Kinematic Workspace Modelling of Two Links Robotic Manipulator // Anbar Journal of Engineering Science. 2020. Vol. 4. P. 101–106. DOI: 10.37649/aengs.2020.171281. (In Engl.).
13. Abdel-Malek K., Yu W. Placement of Robot Manipulators to Maximize Dexterity // International Journal of Robotics and Automation. 2004. Vol. 19 (1). DOI: 10.2316/Journal.206.2004.1.206-2029. (In Engl.).
14. Cao Y., Qi S. P., Lu K. [et al.]. An integrated method for workspace computation of robot manipulator // Proceedings of International Joint Conference on Computational Sciences and Optimization. 2009. Vol. 1. P. 309–312. DOI: 10.1109/CSO.2009.161. (In Engl.).
15. Cao Y., Zang H., Wu L., Lu T. An engineering oriented method for the three dimensional workspace generation of robot manipulator // Journal of Information and Computational Science. 2011. Vol. 8, no. 1. P. 51–61. (In Engl.).
16. Cao Y., Lu K., Zang Y. Accurate Numerical Methods for Computing 2D and 3D Robot Workspace // International Journal of Advanced Robotic Systems. 2011. Vol. 8, Issue 6. DOI: 10.5772/45686. (In Engl.).
17. Guo W. Z., Gao F., Mekid S. A new analysis of workspace performances and orientation capability for 3-DOF planar manipulators // International Journal of Robotics and Automation. 2010. Vol. 25, no. 2. P. 89–101. DOI: 10.2316/Journal.206.2010.2.206-3326. (In Engl.).
18. Thom R. Sur la theorie des envelopes // Journal de Mathématiques Pures et Appliquées. 1962. Vol. 41, no. 2. Р. 177–192. (In Engl.).
19. Lyashkov A. A., Sheveleva T. A. Modelirovaniye rabochego prostranstva planarnogo dvukhzvennogo manipulyatora sredstvami komp’yuternoy grafiki [Modeling the workspace of a three-link planar manipulator] // Ontologiya proyektirovaniya. Ontology of Designing. 2024. Vol. 14, no. 1. P. 71–81. DOI: 10.18287/2223-9537-2024-14-1-71-81. (In Russ.).
20. Lyashkov A. A., Sheveleva T. A. Programma komp’yuternogo modelirovaniya trekhmernoy giperpoverkhnosti, yavlyayushcheysya model’yu rabochego prostranstva ploskogo trлkhzvennogo mekhanizma [A program for computer modeling of a three-dimensional hypersurface, which is a model of the working space of a flat three-link mechanism]. Moscow, 2022. No. 2022685586. (In Russ.).
Review
For citations:
Sheveleva T.A., Lyashkov A.A. Modeling the boundaries of the working space of a planar three-link manipulator. Omsk Scientific Bulletin. 2024;(3):73-81. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-73-81. EDN: PBNXWQ
JATS XML




















