Preview

Omsk Scientific Bulletin

Advanced search

Temperature compensated crystal oscillator design in Keysight ADS

https://doi.org/10.25206/1813-8225-2023-188-132-139

EDN: UJETYF

Abstract

The article proposes an all-embracing approach to designing a temperature compensated crystal oscillator in Keysight ADS CAD system, which allows: to investigate the conditions for the occurrence of self-oscillations in a given oscillator circuit; analyze the temperature-frequency characteristics of the resonator; form requirements for the frequency control function; simulate noise characteristics of the generator; optimize the circuit according to the given parameters. In contrast to the well-known numerical design of a thermally compensated crystal oscillator in SPICE programs with subsequent analysis of the results in a mathematical program, for example, Mathcad, the proposed method allows us to investigate the real shape of oscillations, the spectral purity of the output signal, take into account the nonlinear influence of the circuit and more subtle effects.

About the Authors

A. N. Lyashuk
Omsk State Technical University
Russian Federation

Aleksey N. Lyashuk - Candidate of Technical Sciences, Associate Professor of Radio Engineering Devices and Diagnostic Systems Department, Omsk State Technical University (OmSTU).

Omsk

AuthorID (RSCI) 742615

ResearcherID R-2812-2016



A. V. Kosykh
Omsk State Technical University
Russian Federation

Anatoliy V. Kosykh - Doctor of Technical Sciences, Professor, Dean of Radio Engineering Devices and Diagnostic Systems Department, OmSTU.

Omsk

AuthorID (SCOPUS) 6701547176

ResearcherID G-5127-2013



References

1. Frerking M. Crystal oscillator design and temperature compensation. New York: Van Nostrand, 1978. 241 p. (In Engl.).

2. Andronov A. A., Vitt A. A., Khaykin S. E. Teoriya kolebaniy [Vibration theory]. 2nd ed. Moscow, 1959. 916 p. (In Russ.).

3. Evtyanov S. I. Lampovyye generatory [Lamp generators]. Moscow, 1967. 384 p. (In Russ.).

4. Litvinov V. P. Inzhenernaya metodika analiza i rascheta kvartsevykh generatorov [Engineer technique of the quartz generator analysis and calculation] // Nauchnyy vestnik MGTU GA. Civil Aviation High Technologies (Nauchnyi Vestnik MGTU GA). 2011, no. 171. P. 50–57. (In Russ.).

5. Altshuller G. B. Kvartsevaya stabilizatsiya chastoty [Frequency stabilisation by quartz]. Moscow, 1974. 272 p. (In Russ.).

6. Petrov B. E., Romanyuk V. A. Radioperedayushchiye ustroystva na poluprovodnikovykh priborakh [Radio transmitting devices on semiconductor devices]. Moscow, 1989. 232 p. (In Russ.).

7. Andreyev V. S. Teoriya nelineynykh elektricheskikh tsepey [Theory of non-linear electrical circuits.]. Moscow, 1982. 280 p. (In Russ.).

8. Makarenko V. Problemy modelirovaniya kvartsevykh generatorov v srede NI Multisim [Quartz generator modelling problems in NI Multisim environment] // Modelirovaniye radioelektronnykh ustroystv. Modelling of Radio Electronic Devices. 2010. No. 7. P. 43–49. (In Russ.).

9. Malyshev V. V., Nikitin A. B. Modelirovaniye avtogeneratorov v sistemakh avtomatizirovannogo proyektirovaniya [An oscillator designing using cad simulation] // Nauchno-tekhnicheskiye vedomosti Sankt-peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravleniye. Computing, Telecommunication and Control. 2016. No. 1 (236). P. 15–22. DOI: 10.5862/JCSTCS.236.2. EDN: VUUBFH. (In Russ.).

10. Brendel R., Gillet D., Ratier N. [et al.]. Nonlinear dipolar modelling of quartz crystal oscillators. 2000. URL: https://www.researchgate.net/publication/228867063_Nonlinear_dipolar_modelling_of_quartz_crystal_oscillators (accessed: 15.05.2023). (In Engl.).

11. Addouche M., Brendel R., Gillet D. [et al.]. Modeling of Quartz Crystal Oscillators by Using Nonlinear Dipolar Method // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2003. Vol. 50, no. 5. P. 487–495. DOI: 10.1109/TUFFC.2003.1201461. (In Engl.).

12. Gubarev A. A. Povysheniye effektivnosti modelirovaniya kvartsevykh generatorov v skhemotekhnicheskikh SAPR obshchego naznacheniya [Increase of quartz oscillator modelling efficiency in general-purpose circuit CAD] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2003. No. 2. P. 89–101. (In Russ.).

13. Gubarev A. A., Kosykh A. V., Zavjalov S. A. [et al.]. SPICE simulation of high-Q crystal oscillators: single and dual-mode oscillator analysis // Proc. of the 2003 joint meeting IEEE IFCS and 17th EFTF. 2003. P. 606–614. DOI: 10.1109/FREQ.2003.1275160. (In Engl.).

14. Gehring M. Fast crystal-oscillator-simulation methodology. 2005. URL: https://designers-guide.org/forum/Attachments/GEHRING_-_Fast_Crystal-Oscillator-Simulation_Methodology.pdf (accessed: 02.01.2023). (In Engl.).

15. Ratier N., Bruniaux M., Galliou S. [et al.]. A very high speed method to simulate quartz crystal oscillator // 19th European Frequency and Time Forum (EFTF). 2005. URL: https://www.researchgate.net/publication/29615543_A_Very_High_Speed_Method_to_Simulate_Quartz_Crystal_Oscillator (accessed: 02.01.2023). (In Engl.).

16. Lyashuk A. N., Zavyalov S. A. Generator na poverkhnostnykh akusticheskikh volnakh s shirokoy perestroykoy po chastote [Surface acoustic wave generator with wide frequency tuning range] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2011. No. 3 (103). P. 300–303. EDN: OPFKAF. (In Russ.).

17. Addouche M., Ratier N., Gillet D. [et al.]. ADOQ: a quartz crystal oscillator simulation software // 2001 IEEE International Frequency Control Symposium and PDA Exhibition. 2001. P. 753–757. DOI: 10.1109/FREQ.2001.956375. (In Engl.).

18. Krylov N. M., Bogolyubov N. N. Simvolicheskiye metody nelineynoy mekhaniki v ikh prilozheniyakh k issledovaniyu rezonansa v elektronnom generatore [Symbolic methods of Nonlinear Mechanics in their application to the study of resonance in the electronic generator] // Izvestiya Rossiyskoy akademii nauk. VII seriya. Otdeleniye matematicheskikh i estestvennykh nauk. Bulletin of the Academy of Sciences of the USSR. Series VII. Class of Mathematical and Natural Sciences. 1934. Issue. 1. P. 7–34. (In Russ.).

19. Krylov N. M., Bogolyubov N. N. Vvedeniye v nelineynuyu mekhaniku [Introduction to non-linear mechanics]. Kiev, 1937. 364 p. (In Russ.).

20. Rohde U. L. Harmonic Balance Method Handles Nonlinear Microwave CAD Problems // Microwave Journal. 1987. No. 10. P. 203–210. (In Engl.).

21. Gorgadze S. F., Maksimov A. A. Teoriya garmonicheskogo balansa dlya skhemotekhnicheskogo proyektirovaniya [Harmonic balance theory for scheme technical design] // T-Comm: Telekommunikatsii i transport. T-Comm: Telecommunications and Transport. 2020. Vol. 14. P. 21–32. DOI: 10.36724/2072-8735-2020-14-11-21-32. EDN: NVPJJN. (In Russ.).

22. Specification URL: https://datasheet.lcsc.com/lcsc/1912111437_NDK-EXS00A-CS11019_C280829.pdf (accessed: 02.01.2023) (In Russ.).


Review

For citations:


Lyashuk A.N., Kosykh A.V. Temperature compensated crystal oscillator design in Keysight ADS. Omsk Scientific Bulletin. 2023;(4):132-139. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-132-139. EDN: UJETYF

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)