Preview

Omsk Scientific Bulletin

Advanced search

Bezier curve conjugation for smooth curve joining and corner rounding

https://doi.org/10.25206/1813-8225-2025-194-26-34

EDN: PMANTK

Abstract

The authors propose an analytical method for the smooth connection of two Bezier curves of arbitrary degree using a connecting curve, which is also a Bezier curve. At the points of connection between the connecting curve and the original curves, the smoothness order corresponds to the degrees of the original curves. Additional constraints can be imposed on the connecting curve, which frequently arise when addressing practical design challenges. Theorems establishing the necessary conditions for the existence of the connecting curve are proven. The capabilities of the proposed method are demonstrated by solving two problems: the smooth connection of two initially given Bezier curves and the smooth rounding of an interior corner formed by intersecting initially given Bezier curves. The solution to the second problem enables both symmetric and asymmetric rounding of corners formed by the intersection of non-straight lines, while maintaining a high degree of smoothness at the connection points. The influence of additional constraints on the connecting curve's shape is shown.

The proposed mathematical method is based on solving a system of linear equations, where the equations represent the derivative equality conditions at the connection points and at the points where additional constraints are applied. Bezier curves are treated as special cases of B-splines. The proposed method is applicable to both 2D and 3D scenarios.

About the Authors

O. V. Krivosheev
Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics; Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics
Russian Federation

Krivosheev Oleg Viktorovich - Candidate of Technical Sciences, Deputy Director of the RFNC–VNIIEF for Full Life Cycle Technologies, Sarov; Director of the Digital Technologies Institute, Chief Designer of the Full Life Cycle Systems, Head of the Digital Technologies Department, Sarov Institute of Physics and Technology — Branch of the National Research Nuclear University “MEPhI”, Sarov. SPIN-code: 4120-9990. AuthorID (RSCI): 1131619.
Sarov



S. V. Mavrin
Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics; Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics
Russian Federation

Mavrin Sergey Valentinovich - Candidate of Physical and Mathematical Sciences, Leading Researcher, RFNC–VNIIEF, Sarov; Associate Professor of the Digital Technologies Department, Sarov Institute of Physics and Technology — Branch of the National Research Nuclear University “MEPhI”. AuthorID (RSCI): 604297.

Sarov



A. S. Starkova
Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics
Russian Federation

Starkova Alina Sergeevna - System Analyst, RFNC– VNIIEF.

Sarov



References

1. Chatzivasileiadi A., Wardhana N. M., Jabi W. [et al.]. Characteristics of 3D solid modeling software libraries for nonmanifold modeling. Computer-Aided Design and Applications. 2019. Vol. 16, no 3. P. 496–518. DOI: 10.14733/cadaps.2019.496-518.

2. Ivshin K. S., Basharova A. F. Printsipy sovremennogo trekhmernogo modelirovaniya v promyshlennom dizayne [Principles of modern three-dimensional modeling in industrial design]. Arkhitekton: izvestiya vuzov. Architecton: News of Universities. 2012. No. 39. Р. 101–113. EDN: PCUINV. (In Russ.).

3. Korotkiy V. A. Nezakonomernye krivye v inzhenernoy geometrii i komp'yuternoy grafike [Irregular curves in engineering geometry and computer graphics]. Nauchnaya vizualizatsiya. Scientific Visualization. 2022. Vol. 14, no. 1. P. 1–17. DOI: 10.26583/sv.14.1.01. EDN: RMXYPH. (In Russ.).

4. Panchuk K. L., Myasoedova T. M. Opisanie diskretno zadannogo ploskogo kontura sostavnoy liniey iz drobnoratsional'nykh krivykh Bez'e vtorogo poryadka [Description of a discretely specified planar contour by a compound line of secondorder fractional-rational Bezier curves]. Programmnye sistemy i vychislitel'nye metody. Program Systems and Computational Methods. 2019. No. 3. P. 50–59. DOI: 10.7256/24540714.2019.3.30637. EDN: SYKZXG. (In Russ.).

5. Borisenko V. V. Postroenie optimal'nogo splajna Bez'e [Construction of optimal Bezier splines]. Fundamental'naya i prikladnaya matematika. Fundamental and Applied Mathematics. 2016. Vol. 21, no. 3. P. 57–72. (In Russ.).

6. Fitter H. N. [et al.] A review on approaches for handling Bezier curves in CAD for Manufacturing // Procedia Engineering. 2014. Vol. 97. P. 1155–1166. DOI: 10.1016/j.proeng.2014.12.394.

7. Lyubchinov E. V., Panchuk K. L. O gladkosti stykovki linij i poverhnostej pri ciklograficheskom modelirovanii poverhnostnyh form avtomobil'nyh dorog [On the smoothness of compound of the lines and surfaces in cyclographic modeling of surface forms of roads]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arhitektura. Bulletin of the South Ural State University. Series: Construction Engineering and Architecture. 2020. Vol. 20, no. 1. P. 52–62. DOI: 10.14529/build200106. EDN: GCZCOI. (In Russ.).

8. Korotkiy V. A. Konstruktivnye algoritmy formirovaniya sostavnykh kubicheskikh krivykh Bez'e v prostranstve i na ploskosti [Constructive algorithms for forming compound cubic Bezier curves in space and on plane]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2022. No. 2 (182). P. 10–16. DOI: 10.25206/1813-8225-2022-182-10-16. EDN: ZAYBGU. (In Russ.).

9. Romakin V. A. Sglazhivanie lomanykh liniy sostavnymi splaynami Bez'e [Polyline smoothing with compound Bezier splines]. Vestnik YuUrGU. Seriya: Vychislitel'naya matematika i informatika. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2022. Vol. 11, no. 4. P. 37–50. DOI: 10.14529/cmse220403. EDN: LRUKLU. (In Russ.).

10. Lu L. Explicit algorithms for multiwise merging of Bézier curves. Journal of Computational and Applied Mathematics. 2015. Vol. 278. P. 138–148. DOI: 10.1016/j.cam.2014.10.002.

11. Lu L., Jiang C. An iterative algorithm for G2 multiwise merging of Bézier curves. Journal of Computational and Applied Mathematics. 2016. Vol. 296. P. 352–361. DOI: 10.1016/j.cam.2015.10.007.

12. Lu L. An explicit method for G3 merging of two Bézier curves. Journal of Computational and Applied Mathematics. 2014. Vol. 260. P. 421–433. DOI: 10.1016/j.cam.2013.10.030.

13. Zhu P., Wang G. Optimal approximate merging of a pair of Bézier curves with G2-continuity. Journal of Zhejiang University: SCIENCE A. 2009. Vol. 10, no. 4. P. 554–561. DOI: 10.1631/jzus.A0820301.

14. Gospodarczyk P., Woźny P. Merging of Bézier curves with box constraints. Journal of Computational and Applied Mathematics. 2016. Vol. 296. P. 265–274. DOI: 10.1016/j.cam.2015.10.005.

15. Ganchuk S. N., Krivosheev O. V., Mavrin S. V., Ryzhov S. A. Approksimaciya sopryazheniya krivyh Bez'e s sohraneniem poryadka gladkosti i dopolnitel'nymi ogranicheniyami [Approximation of Bézier curve conjugation with smoothness order preservation and additional constraints]. Vestnik YuzhnoUral'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arhitektura. Bulletin of the South Ural State University. Series: Construction Engineering and Architecture. 2024. Vol. 24, no. 1. P. 59–69. DOI: 10.14529/build240108. EDN: GSDRNS. (In Russ.).

16. Otechestvennaya sistema polnogo zhiznennogo cikla «Sarus» obespechit importonezavisimost' i bezopasnost' [Domestic full life cycle system «Sarus» will ensure import-independence and safety]. SAPR i grafika. CAD and Graphics. 2023. No. 12 (328). P. 68–71. EDN: IEOKZT. (In Russ.).

17. Ganchuk S. N., Starkova A. S., Krivosheev O. V., Mavrin S. V., Ryzhov S. A. Polnost'yu gladkaya approksimaciya proizvol'nogo nabora krivyh Bez'e. Chast' 1: krivye Bez'e i postanovka zadachi [Completely smooth approximation of an arbitrary set of Bezier curves. Part 1: Bezier curves and problem statement]. Vestnik komp'yuternyh i informacionnyh tekhnologij. Herald of Computer and Information Technologies. 2024. Vol. 21, no. 11. P. 3–8. DOI: 10.14489/vkit.2024.11.pp.003-008. EDN: FSHVLF. (In Russ.).

18. Ganchuk S. N., Mavrin S. V., Semina V. V., Starkova A. S. Gladkoe sopryazhenie dvuh ploskih krivyh Bez'e [Smooth conjugation of two flat Bezier curves]. Vestnik Lipeckogo gosudarstvennogo tekhnicheskogo universiteta. Bulletin of Lipetsk State Technical University. 2024. No. 1 (54). P. 5–11. (In Russ.).


Review

For citations:


Krivosheev O.V., Mavrin S.V., Starkova A.S. Bezier curve conjugation for smooth curve joining and corner rounding. Omsk Scientific Bulletin. 2025;(2):26-34. (In Russ.) https://doi.org/10.25206/1813-8225-2025-194-26-34. EDN: PMANTK

Views: 8

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)