Моделирование процесса проволочно-вырезной электроэрозионной обработки методом конечных элементов
https://doi.org/10.25206/1813-8225-2025-194-41-48
EDN: UMOBKZ
Аннотация
В статье предлагается методика моделирования процессов проволочно-вырезной электроэрозионной обработки методом конечных элементов. Описаны основные подходы к расчету тепловых полей, анализу дефектного слоя и фазовых превращений, возникающих при обработке материалов. Рассмотрена возможность использования модели для прогнозирования глубины дефектного слоя и топографии обработанной поверхности. Предложенная методика позволяет оценивать влияние параметров обработки на качество заготовок из титановых и циркониевых сплавов. Методика может применяться в авиационной и космической промышленности, медицине, судостроении и других отраслях, где требуется высокая точность обработки сложных деталей.
Об авторах
Н. В. БобковРоссия
Бобков Николай Владимирович - старший преподаватель кафедры «Технология машиностроения» ОмГТУ, SPIN-код: 5351-7755. AuthorID (РИНЦ): 819427. AuthorID (SCOPUS): 57194829384. ResearcherID: S-1503-2016.
Омск
А. А. Федоров
Россия
Федоров Алексей Аркадьевич - кандидат технических наук, доцент кафедры «Технология машиностроения» ОмГТУ, SPIN-код: 4626-9660. AuthorID (РИНЦ): 610896. AuthorID (SCOPUS): 57193509299. ResearcherID: A-7188-2014.
Омск
Н. С. Артеменко
Россия
Артеменко Никита Сергеевич - аспирант, инженер научно-исследовательской части Учебного научно-производственного центра «Современные технологии машиностроения» ОмГТУ.
Омск
Список литературы
1. Лазаренко Б. Р., Лазаренко Н. И. Электрическая эрозия металлов. В 2 вып. Москва: Госэнергоиздат, 1944. 60 с.
2. Kunieda M., Lauwers B., Rajurkar K. P [et al.]. Advancing EDM through fundamental insight into the process. CIRP Annals. 2005. Vol. 54, no. 2. P. 64–87. DOI: 10.1016/s0007-8506(07)60020-1.
3. Descoeudres A. Characterization of electrical discharge machining plasmas. EPFL. 2006. DOI: 10.5075/epfl-thesis-3542.
4. Joshi S., Pande S. Development of an intelligent process model for EDM. The International Journal of Advanced Manufacturing Technology. 2009. Vol. 45. P. 300–317. DOI: 10.1007/s00170-009-1972-4.
5. Beck J. V. Large time solutions for temperatures in a semiinfinite body with a disk heat source. International Journal of Heat and Mass Transfer. 1981. Vol. 24, no. 1. P. 155–164.
6. Jilani S. T., Pandey P. C. Analysis and modelling of EDM parameters. Precision Engineering. 1982. Vol. 4. P. 215–221.
7. Pandit S. M., Rajurkar K. P. A stochastic approach to thermal modeling applied to electro-discharge machining. ASME. J. Heat Transfer. 1983. Vol. 105, no. 3. P. 555–562. DOI: 10.1115/1.3245621.
8. Dijck F., Dutré W. Heat conduction model for the calculation of the volume of molten metal in electric discharges. Journal of Physics D: Applied Physics. 2002. Vol. 7. P. 899. DOI: 10.1088/0022-3727/7/6/316.
9. Erden A., Kaftanoglu B. Heat transfer modelling of electric discharge machining. Proceedings of the Twenty-First International Machine Tool Design and Research Conference. London, 1981. DOI: 10.1007/978-1-349-05861-7_46.
10. Jilani S. T., Pandey P. C. An analysis of surface erosion in electrical discharge machining. Wear. Vol. 84, Issue 3. 1983. P. 275–284. DOI: 10.1016/0043-1648(83)90269-7.
11. Pandey P. C, Jilani S. T. Plasma channel growth and the resolidified layer in EDM. Precision Engineering. 1986. Vol. 8. P. 104–110.
12. Beck J. V. Transient temperatures in a semi-infinite cylinder heated by a disk heat source. International Journal of Heat and Mass Transfer. 1981. Vol. 24. P. 1631–1640.
13. Salah N. B., Ghanem F., Atig K. B. Numerical study of thermal aspects of electric discharge machining process. International Journal of Machine Tools and Manufacture. 2006. Vol. 46, no. 7-8. P. 908–911. DOI: 10.1016/j.ijmachtools.2005.04.022.
14. Jithin S., Raut A., Bhandarkar U. P. [et al.]. Finite element model for topography prediction of electrical discharge textured surfaces considering multi-discharge phenomenon. International Journal of Mechanical Sciences. 2020. Vol. 177. P. 105604. DOI: 10.1016/j.ijmecsci.2020.105604.
15. Ming W., Zhen Z., Shengyong Y. [et al.]. Investigating the energy distribution of work piece and optimizing process parameters during the EDM of Al6061, Inconel718 and SKD11. The International Journal of Advanced Manufacturing Technology. 2017. Vol. 92. P. 4039–4056. DOI: 10.1007/s00170-017-0488-6.
16. Singh H. Experimental study of distribution of energy during EDM process for utilization in thermal models. International Journal of Heat and Mass Transfer. 2012. Vol. 55, no. 19-20. P. 5053–5064. DOI: 10.1016/j.ijheatmasstransfer.2012.05.004.
17. Zhang Y., Yonghong L., Yanget S. [et al.]. A novel method of determining energy distribution and plasma diameter of EDM. International Journal of Heat and Mass Transfer. 2014. Vol. 75. P. 425–432. DOI: 10.1016/j.ijheatmasstransfer.2014.03.082.
18. Li Q., Yang X. Study on arc plasma movement and its effect on crater morphology during single-pulse discharge in EDM. The International Journal of Advanced Manufacturing Technology. 2020. Vol. 106. P. 5033–5047. 106. DOI: 10.1007/s00170-020-04964-0.
19. Ghiculescu D., Marinescu N. I., Nanu S. Modelling aspects of removal mechanism at ultrasonic aided electro discharge machining. International Journal of Material Forming. 2009. Vol. 2. P. 685–688. DOI: 10.1007/s12289-009-0586-6.
20. Khatri B. C., Rathod P., Valaki J. B. Ultrasonic vibration– assisted electric discharge machining: A research review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2016. Vol. 230, no. 2. P. 319–330. DOI: 10.1177/0954405415573061.
21. Mansoor S. M. Finite element analysis of magnetic field assisted wire electric discharge machine. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 402, no. 1. P. 012051. DOI: 10.1088/1757-899X/402/1/012051.
22. Ming W. Comparative study of energy efficiency and environmental impact in magnetic field assisted and conventional electrical discharge machining. Journal of Cleaner Production. 2019. Vol. 214. P. 12–28. DOI: 10.1016/j.jclepro.2018.12.231.
23. Yu L. L. Research on mechanism and application of electrical discharge machining with synchronous servo double electrodes for non-conductive engineering ceramics. China University of Petroleum (East China). 2008. DOI: 10.2991/emeit.2012.280.
24. Yang X., Guo J., Chen X. [et al.]. Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precision Engineering. 2011. Vol. 35, no. 1. P. 51–57. DOI: 10.1016/j.precisioneng.2010.09.005.
25. Yue X., Yang X. Molecular dynamics simulation of machining properties of polycrystalline copper in electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2019. Vol. 233, no. 2. P. 371–380. DOI: 10.1177/0954405417748187.
26. Zhang G., Guo J., Minget W. [et al.]. Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method. Applied Surface Science. 2014. Vol. 290. P. 359–367. DOI: 10.1016/j.apsusc.2013.11.084.
27. Yue X., Yang X., Li Q. [et al.]. Novel methods for highspeed observation of material removal and molten pool movement in EDM. Precision Engineering. 2020. Vol. 66. P. 295–305. DOI: 10.1016/j.precisioneng.2020.07.009.
28. Wang J., Han F. Simulation model of debris and bubble movement in consecutive-pulse discharge of electrical discharge machining. International Journal of Machine Tools and Manufacture. 2014. Vol. 77. P. 56–65. DOI: 10.1016/j.ijmachtools.2013.10.007.
29. Zhu Z., Guo D., Xu J. [et al.]. Processing characteristics of micro electrical discharge machining for surface modification of TiNi shape memory alloys using a TiC powder dielectric. Micromachines. 2020. Vol. 11, no. 11. P. 1018. DOI: 11.1018.10.3390/mi11111018.
30. Ming W., Zhang S., Zhang G. [et al.]. Progress in modeling of electrical discharge machining process. International Journal of Heat and Mass Transfer. 2022. Vol. 187. P. 122563. DOI: 10.1016/j.ijheatmasstransfer.2022.122563.
31. Dibitonto D. D., Eubank P. T., Patel M. R. [et al.]. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. Journal of Applied Physics. 1989. Vol. 66, no. 9. P. 4095–4103. DOI: 10.1063/1.343994.
32. Eubank P. T., Patel M. R., Barrufet M. A. [et al.]. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. Journal of Applied Physics. 1993. Vol. 73, no. 11. P. 7900–7909. DOI: 10.1063/1.353942.
33. Wang Z. L., Xie B. C., Wang, Y. K. [et al.]. Numerical Simulation of Cathode Erosion in EDM Process. Advanced Materials Research. 2012. Vol. 462. P. 109–115. DOI: 10.4028/www.scientific.net/AMR.462.109.
34. Izquierdo B., Sanchez J., Plaza S. [et al.]. A numerical model of the EDM process considering the effect of multiple discharges. International Journal of Machine Tools and Manufacture. 2009. Vol. 49, no. 3-4. P. 220–229. DOI: 10.1016/j.ijmachtools.2008.11.003.
35. Jithin S., Bhandarkar U. V., Joshi S. S. Multi-spark model for predicting surface roughness of electrical discharge textured surfaces. The International Journal of Advanced Manufacturing Technology. 2020. Vol. 106. P. 3741–3758. DOI: 10.1007/s00170-019-04841-5.
36. Kansal H. K., Singh S., Kumar P. Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Mathematical and Computer Modelling. 2008. Vol. 47, no. 11-12. P. 1217–1237. DOI: 10.1016/j.mcm.2007.05.016.
37. Sundriyal S., Yadav J., Walia R. [et al.]. Thermophysicalbased modeling of material removal in powder mixed Near-Dry electric discharge machining. Journal of Materials Engineering and Performance. 2020. Vol. 29. P. 6550–6569. DOI: 10.1007/s11665-020-05110-3.
38. Bobkov N. V., Fedorov A. A., Polonyankin D. A. [et al.]. Issledovaniye vliyaniya rezhimov provolochno-vyreznoy elektroerozionnoy obrabotki na morfologiyu, sherokhovatost’ i treshchinoobrazovaniye poverkhnosti tugoplavkikh metallov [Investigation of the influence wedm on morphology, roughness and cracking of surfaces refractory metals]. Dinamika sistem, mekhanizmov i mashin. Dynamics of Systems, Mechanisms and Machines. 2018. Vol. 6, no. 1. P. 148–154. DOI: 10.25206/23109793-2018-6-1-148-154. EDN: VLXWHK. (In Russ.)
Рецензия
Для цитирования:
Бобков Н.В., Федоров А.А., Артеменко Н.С. Моделирование процесса проволочно-вырезной электроэрозионной обработки методом конечных элементов. Омский научный вестник. 2025;(2):41-48. https://doi.org/10.25206/1813-8225-2025-194-41-48. EDN: UMOBKZ
For citation:
Bobkov N.V., Fedorov A.A., Artemenko N.S. Modeling of wire-cut electrical discharge machining process by finite element method. Omsk Scientific Bulletin. 2025;(2):41-48. (In Russ.) https://doi.org/10.25206/1813-8225-2025-194-41-48. EDN: UMOBKZ
JATS XML




















