HIL modeling of systems using the multipole filter
https://doi.org/10.25206/1813-8225-2025-194-96-106
EDN: JOAKSK
Abstract
The article proposes an interface (multipole filter) that provides stability of the semi-natural modelling of the initial systems when the fragments of the system are represented by N-poles connected with each other by high intensity loopback (HIL).
Thus, the article considers a generalized radio-technical system as an initial system, which fragments are N-poles that exchange currents and voltages with each other at every simulation through the proposed interface (2xN-pole/filter). The stability analysis of the HIL modeling process is carried out by circuit theorymethods and numerical methods of systems of linear algebraic equations solution. The method of the stabilizing filter parameters determination is demonstrated. At these parameters the filter is an ideal delay line, i.e. the amplitude-frequency response of the filter does not depend on frequency, and the phase-frequency response changes directly proportional to frequency with the proportionality coefficient as the delay time.
The adequacy of the obtained theoretical results is illustrated by means of numerical modeling on threephase inverter parts.
Moreover, the article assumes that since the filter, with the correct choice of parameters has unique characteristics, it is not only an ideal delay line, but also a pure delay filter, as its amplitude-frequency response is constant and equal to one, it would be called a multipole pure delay filter (mppd-filter).
Keywords
About the Authors
M. N. MaksimovRussian Federation
Maksimov Mikhail Nikolayevich - Candidate of Technical Sciences, Associate Professor, Associate Professor of the Theoretical Bases of Radio Engineering Department, Southern Federal University.
Taganrog
S. M. Maksimova
Russian Federation
Maksimova Sofiya Mikhaylovna - Research Engineer.
Rostov-on-Don
References
1. Wei Ren. Accuracy evaluation of power Hardware-in-theLoop (PHIL) simulation. Florida State University, 2007. 68 p. URL: https://repository.lib.fsu.edu/islandora/object/fsu%3A176356 (accessed: 14.04.2025).
2. Dmitriyev-Zdorov V. B. Mnogourovnevoye obobshcheniye klassa relaksatsionnykh algoritmov dlya analiza elektricheskikh tsepey [Multilevel generalisation of a class of relaxation algorithms for the analysis of electric circuits]. Taganrog, 1998. 277 p. (In Russ.).
3. Denisenko V. V. Metody modelirovaniya SBIS s ispol’zovaniyem polunaturnoy modeli MOP-tranzistora [VLSI modelling methods using semi-natural MOSFET model]. Taganrog, 2010. 349 p. (In Russ.).
4. Maximov M. N., Merezhin N. I., Fedosov. V. P. [et al.]. Ekvivalentnaya skhema sshivayushchego chetyrekhpolyusnika [The equivalent circuit of a joining two-port]. Radiotekhnika i Elektronika. 2016. Vol. 61, no 2. P. 162–169. DOI: 10.7868/S0033849416020030. EDN: VCPNHL. (In Russ.).
5. Maksimov M., Lyashev V., Merezhin N. [et al.]. PoincareSteklov filter in Hardware-in-the-Loop modeling // 2017 International Siberian Conference on Control and Communications (SIBCON). Astana, Kazakhstan, 2017. P. 1–6. DOI: 10.1109/ SIBCON.2017.7998531.
6. Santi E., Siegers J. Improved power Hardware-in-theLoop interface algorithm using wideband system identification. 2014 IEEE Applied Power Electronics Conference and Exposition (APEC). 2014. P. 1198–1204. DOI: 10.1109/APEC.2014.6803459.
7. Tucker J. Power Hardware-in-the-Loop (PHIL) considerations and implementation methods for electrically coupled systems. University of South Carolina, 2011. URL: https://scholarcommons.sc.edu/etd/2207 (accessed: 14.04.2025).
8. Mersenski R. Evaluation of a new power Hardware-in-theLoop (PHIL) interface algorithm for current controlled amplifiers. University of South Carolina, 2011. URL: https://scholarcommons. sc.edu/etd/2196 (accessed: 14.04.2025).
9. Paran S., Edringto C. Improved power Hardware-in-theLoop interface methods via impedance matching. 2013 IEEE Electric Ship Technologies Symposium (ESTS). 2013. P. 342–346. DOI: 10.1109/ESTS.2013.6523758.
10. Lauss G., Strunz K. Accurate and stable Hardware-in-theLoop (HIL) real-time simulation of integrated power electronics and power systems. IEEE Transactions on Power Electronics. 2021. Vol. 36, no. 9. P. 1–1. DOI: 10.1109/TPEL.2020.3040071.
11. Popov V. P., Maksimov M. N., Merezhin N. I. Ob ustoychivosti i skhodimosti modelirovaniya po chastyam [About stability and convergence of modeling by parts]. Vestnik Yuzhnogo nauchnogo tsentra RAN. Science in the South of Russia. 2005. Vol. 1, no. 3. P. 11–21. EDN: KYWFIP. (In Russ.).
12. Maksimov M. N., Maksimova S. M. Primeneniye chetyrekhpolyusnika Puankare-Steklova dlya postroyeniya interfeysa pri polunaturnom modelirovanii sistem [Application of the four-pole Poincare–Steklov in interface construction for Hardware-in-the-Loop simulation]. Izvestiya YuFU. Tekhnicheskiye nauki. Izvestiya SFedU. Engineering Sciences. 2021. No. 6 (223). P. 43–52. DOI: 10.18522/2311-3103-2021-6-43-52. EDN: OBQHZR. (In Russ.).
13. Popov V. P. Osnovy teorii tsepey [Principles of the circuit theory]. Moscow, 2003. 575 p. (In Russ.).
14. Vlakh I., Singkhal K. Mashinnyye metody analiza i proyektirovaniya elektronnykh skhem [Machine methods of analysis and design of electronic circuits] // trans. from Engl. by A. F. Obedkov; ed. by A. A. Turkin. Moscow, 1988. 560 p. (In Russ.).
15. Laevsky Yu. M. O nekotorykh itogakh razvitiya sovremennoy vychislitel’noy matematiki [On some conclusions of numerical mathematics development]. Vychislitel’nyye tekhnologii. Journal of Computational Technologies. 2002. Vol. 7, no. 2. P. 74–83. EDN: KZAQCB. (In Russ.).
16. Maksimov M. N. Programma dlya polunaturnogo modelirovaniya sistemy s ispol’zovaniyem interfeysov, postroyennykh na baze chetyrлkhpolyusnika Puankare-Steklova [Program for semi-natural modelling of the system using interfaces based on the Poincare–Stecklov quadrupole]: Certificate of State Registration of a Computer Program No. 2021667901; filed October 29th, 2021; published November 08th, 2021. Moscow: FIPS, 2021. (In Russ.).
17. Maksimov M. N., Maksimova S. M. Demonstrator primeneniya mnogopolyusnogo fil’tra Puankare–Steklova dlya polunaturnogo modelirovaniya trлkhfaznogo invertora [Demonstrator of application of multipole Poincare-Stecklov filter for semi-natural modelling of three-phase inverter]: Certificate of State Registration of a Computer Program No. 2023684585; filed November 15th, 2023; published November 16th, 2023. Moscow: FIPS, 2023. (In Russ.).
Review
For citations:
Maksimov M.N., Maksimova S.M. HIL modeling of systems using the multipole filter. Omsk Scientific Bulletin. 2025;(2):96-106. (In Russ.) https://doi.org/10.25206/1813-8225-2025-194-96-106. EDN: JOAKSK
JATS XML



















